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STRESSES ON THE SURFACE OF A RIGID NEEDLE IN AN 
ORTHOTROPIC ELASTIC MEDIUM? 
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(Received 14 May 1990) 

Using the general solution of the problem of stress concentrations on the surfaces of rigid ellipsoidal 

inclusions [l], the three-dimensional problem of stresses on the surface of a completely rigid needle in an 

unbounded elastic orthotropic medium under the action of a uniform external field is solved. By a needle we 

mean an ellipsoidal inclusion, one dimension of which is large compared with the other two. Explicit 

formulas are obtained and investigated for stresses along the principal sections of the needle in the 

orthotropic medium and over the entire surface of the needle in an isotropic medium. The calculations are 

performed, apart from the singular terms (large, but finite quantities). 

1. THE STRESS u@(n) on the surface of a completely rigid ellipsoidal inhomogeneity in an arbitrary anisotropic 

medium and a uniform external field uoaB has the form 

a(n) =W) 00, F(n) =D(o)R, D(n)=cK(n) (1.1) 

Here n = (nl , n2, n3) is the limit normal vector to the ellipsoidal surface with semi-axes II, (0~ = 1,2,3) and 
F(n) is a tensor concentration coefficient. The tensor K(n) does not depend on the geometry of the 

inhomogeneity, is expressed in terms of the Fourier transform of the Green tensor of the homogeneous 
medium, and was obtained explicitly in [l] for an orthotropic medium. The tensor of elastic constants c of the 

f Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 549-552, 1992. 
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orthotropic medium in a system of coordinates coupled rigidly to the axes of the ellipsoid has nine non-zero 
components which we denote by 

The tensor D(n) is found by contracting the tensors c and K(n). 
The most difficult part of finding the concentration coefficients is the calculation of the tensor R in (1.1). The 

four-tensor R depends explicitly on the geometrical parameters of the ellipsoid and is the inverse tensor to 
I) = (D(n)), where (D(n)) is the mean value of D(n) over the surface of the ellipsoid [2, 31. Just like D(n), D 
and R are symmetrical within pairs of indices, but index pairs cannot be transposed. 

We introduce the dimensionless parameters 

q=uZQ,-~+ ~=a$%- ’ (a,>su.*a3) 

For needle -q =% 1, 5 - 1, and the expansion of the tensor D in terms of the small (but finite) parameter q has the 
form 

D=DO+qz 1 In q 1 D, +0 (11”) 

n 

Do+tL I D(cp, 0) (cos2 ip+e* 3in2 cp)-jdg! (14 

D,==tarf 5 &,“((P, 0) dcp (14 
0 

D(q, O)=D(n,=t=O, R~=COS cp, n3=sin cp) 

It has been shown [1] that the tensor D,-, does not have an inverse and singularities of order (q21nq)-’ appear 
in the components R I’._. Corresponding singularities appear in the stresses in neighbourhoods of the needle 
endfaces from the extension aOaa ((3~ = 1, 2, 3). Th e pure shear components of the external stresses do not 
produce singularities on the surface of the needle. 

Assuming that the external medium is orthotropic, we will calculate the components R ll..aol, apart from the 
singular terms. 

Analysis of the structure of the tensor D shows that (DO)oLu..ll = 0, (D0)01a..22 f0 and (DO)aa.,33 #0 and to 
determine the singular terms of RI’._ it is sufficient to find (DO)au..22, (Do)(yu..37 and (D1)“..rl expressed in 
terms of the single integrals (1.2) and (1.3). 

We will calculate the tensor Do. For later convenience we will derive DO[-l rather than Do: 
.__ -- 

/~,F.-‘=L-‘(~~,+L~+~21C,,)-‘[Q+~~~~s(E-’L+IIc~*)+ 

(1.4) 

The non-zero components of the tensors I?, Q and N have the form 

0” ..az=-(A,lc,l-‘+r,3), B22..35-N33..22=~23, N”..22=c,2 

Q” ..35=-(A,3~~‘-.‘f~,o)r 833..39=-Q33,.*?=~93, B”.45=c,3 

Q 
22 ..??=Q33..53=A,lr~(-t-~23~k,r P2.,22=-Qz2..33=~22 

AaP is the cofactor of the element cup in the matrix I(c+\I. 
We will find (Or)““.. 11, Investigation of the structure of the tensor I.),:‘(+, 0) from (1.3) has shown that the 

+-dependence in integrals (1.2) and (1.3) is analogous and the components of (&t-l) are obtained from 
(DOS-’ ) by multiplying the right-hand side of (1.4) by 2c&r and replacing 4 in it by c~~c~~-‘, and the tensors 
B, Q, N by T, P, S, respectively. The non-zero components of T, P, S are as follows: 

T” ..11=&3-c12c4~, T22..,,=-C22C@B 

TJ3..,1=- (&3+c23CW), p3’ . . iI=-cd53 

S”..*,=C&&- ‘(A+c:,sA,3+rscA,z) +c~~c~~+c,J~ss+~A~s 
P..t,= cazc5,-&-k,cse, P”..i,=kzcss 

5=..,,= cmcetr-blz-klcu, P22..1i=kaCss 
kz=Az2c55-1-c~S. k3=--.(Ai2cS5-‘+cz3) 
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The components Rll..,, are elements of the inverse matrix to I]b,a]I, (CX, l3 = 1, 2, 3), where 

b,,=$] In rl] (D,)aa..,,, ba2= (&)Oa..~~r ba3= (&Iaa..a~ 

Inverting I] b,, ]I we obtain 

R”..aa=A-‘A,,xJc e s5 fi6. x=(h*l~n~l)-, 

where A is the determinant of the matrix I]c,al/ (IX, l3 = 1, 2, 3). 
If we introduce Young’s moduli E,, the Poisson’s ratios vaa 

medium [4], then the components R’l..,, acquire the form 
and the shear moduli G,, of an orthotropic 

R’,..,,=x,‘G,~G,JE,-‘, R”..r,=-2’,,R” ..,, (y=2, 3) 

For an isotropic medium with Poisson’s ratio v 

R”..z*=R”..ss=-vR”..1,=-0,5 vx(I+v) -’ 

2. The singular components of the stress on the surface of the needle have the form 

@s(n) =naR..,,(n)R”..llaoA~ 

We will derive the values of the stresses at the endface A (a,, 0, 0) of the needle in the orthotropic medium: 

- 
=E,-‘xlG,,G,s( u~“-v,~u~22-v,so~s3) 

a22(A)=c,2c,,-,d’(A) = 
(2.1) 

=(Y2,+V231)3,)(1-V23VSZ)-',"(A) 

~~~(A)=c,~c,,-‘a”(A)= 

=(~3,+~321)2,)(~-~23~32)-~d'(A), o@(A)=0 (C&p) 

For an isotropic medium 

(2.2) 

Investigation of the dependence of the needle stresses on the form of the external field and medium 
anisotropy will be performed in a local system of coordinates fixed to the surface normal n so that the e1 axis is 
directed along n, while the e2 and e3 axes lie in the tangent plane. We denote the stresses in the local system by 
u,a(n). Then o,,(n) is directed along the normal to the surface at all its points. In the n2 = 0 section the stress 
uz2(n) is directed orthogonally to the plane of the section and u33(n) along the contour of the section; and 
conversely for n3 = 0. On the needle endface u,a (A) = u”@(A). 

For an isotropic medium we find that over the whole surface of the needle 

~,,(n)=n,~d’(A), b23(11)=O 

o22(n)=u33(n)=~(1-v)-'n,~o"(A) 

o12(n)=n1n2~((l-n32)-'a"(A) 

a13(n)=n,3n33(‘i-ns2)-‘u”(A) 

(2.3) 

with the expression for u”(A) being given by (2.2). 
For an orthotropic medium we derive formulas for the stresses along the principal sections of the needle. In 

the central section n1 = 0 the singular stresses vanish, while for n2 = 0 we have 

~~,(n)=n,~u~,(A) 

(J22(n)=pn,2(c,2n,2+k3n32) d,(A) 

(J33(n)=pn,2[c,3n,4~(k2-~c33)A34+ 

(2.4) 



Stresses on the surface of a rigid needle 463 

where the expression for o”(A) was given by the first formula in (2.1). 
In the n3 = 0 section the expression for a+(n) is obtained by exchanging indices 2-3 and 5-6 on both 

sides of Eqs (2.4). 
It is clear from the formulas derived that all the singular surface stresses are expressed in terms of the stress 

o”(A) at the endface of the needle. Hence some qualitative results can be obtained simply by investigating 
u”(A). 

The stress ull (A) is directed along the major axis, is (in absolute terms) the largest stress at the endface of 
the needle, and can have either the same sign as the external field or the opposite sign for small a”” and 
sufficiently large uo2*, u. 33 . The value of u”(A) depends only on the elastic constants describing the properties 
of the medium and the direction of the axis of the needle, with u”(A) increasing as Young’s modulus El 
decreases and as the shear moduli G12, and G13 increase. 

In the transition from a needle 5 s 1 to a stretched disk (5 < 1) the stress over the entire surface increases as 
5-1. 

Investigation of the dependence of the stresses on the surface normal shows that the qualitative picture of the 
distribution of the stresses over the needle in an orthotropic medium can be distinguished from the isotropic 
case. For an isotropic medium the stresses aa, (a = 1, 2, 3) reach their highest values at the endface, while 
for u12(n) and u13(n) there is a “splash” effect [3]. For an orthotropic medium the behaviour of the stress 
ull (n) normal to the surface is similar to the isotropic case, while for the stresses 022(n) and (~~~(n), as for a 
hollow needle [S], the maximum can be shifted from the end of the needle. 
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